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 Many different purposes… And complexities (today more than 3000 products)
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[Courtesy: C. Henz]
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WearableApplicationsBreakdown - 2012/2020

(Yole Développement, July 2015)
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Wearable

Connected Cars

Connected CitiesIndustrial

Transportation

Healthcare

Oil & Gas

[Source: Goldman Sachs Inv. Res.] 

Big Data Analytics 
Frameworks & Machine 
Learning Algorithms

Continuous system 
monitoring 



 IoT long-term economic benefits [McKinsey]
 Remote healthcare: $11.1Trillion/year saved (1B people)
 Efficient energy use: 45TWh/year saved in EU (4M houses)                                                                  
 Business-to-business services: 70% added value
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Dramatic benefits! But will this really work well?



 Burden of disease shifted in recent years
 Disorders with behavioral causes are key
 Expected to be 75% of GDP by 2030 [McKinsey]

 Two-fold paradigm shift in health delivery

 Cardiovascular monitoring is key today… 

Environment

Genetics

Access to care

Health 
behaviors,
personal 
lifestyle

Determinants of health issues 
(source: Institute for the future, Center for 

disease control and prevention, 2006)

Symptom-based  Preventive healthcare
Hospital-centered Person-centered
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Trainer/coach

Home record

Wearables in IoT era will relay information to the 
cloud and healthcare providers

ECG Holter data logger 
(clinical practice)

Resting Electrocardiogram
(ECG)
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Zhang, 2012 IMEC cardiac patch
(Yazicioglu,2009)

Holst Centre 
(Masse, 2014)

Shimmer 
(shimmerresearch.com, 2014)

Heart Rate Monitoring 
(Massagram, 2010) 

Corventis’s PiiX
(Corventis cardiac 

systems) 
Toumaz’s Sensium Life 
(Wong,2012) 

Raw bio-signal transfer or after simple tasks (heart rate 
monitoring, basic filtering) on single-input biosignals

Apple Watch 
(Apple Inc, 2015)
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 TI MSP430 microcontroller
 16-bit, 8MHz, 10KB RAM, 48KB Flash
 ADC converters, DMA, HW multiplier

 CC2420 radio
 250 Kbps, ZigBee compliant

 Sensors
 3-channel ECG
 Accerelometers and gyroscopes

 CONSTRAINTS:
 No floating point operation
 No hardware division
 Limited memory
 Limited computing power
 Limited autonomy 

(rechargeable Li-polymer 
battery of 250 mAh)
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Sensing and 
sampling

Data processing
Radio communication

Energy consumption breakdown

ECG
ShimmerTM node 1. Can we reduce the data sensing/sampling cost and the 

amount of streamed data?

2. Can we embed automated analysis without compromising 
the system lifetime?

Under stringent processing and memory constraints… Power!

[Rincon et al., DATE ‘08 and TITB ‘11]

David Atienza (ESL-EPFL) 9

Sensing and 
sampling

Data processing Radio communication

 This wireless 1-lead ECG streaming monitor lasts 134.6 h (2011)
 Current wearable technology it lasts 172.5 h (2016)
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 Diffusion of innovations: very high expectations since 2014
 But no real progress apparently (or very slow at least), too complex or just impossible?
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[Source: Gartner] 

(1) Perceptual smart machine age and                         
(2) Platform revolution
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 Cheap and connected embedded systems
 Sensors: ~60 cents
 Bandwidth and processing: 50x in last ten years
 Network: IPv6 (3.4x1038 devices)

 But no energy-efficient wearables systems
 Communication energy does not scale
 Poor energy efficiency vs. biological systems

 Let’s see the main features of the brain

David Atienza (ESL-EPFL)

[Courtesy: Ruch, IBM]

1000x better than current               
technology (1GOPS/mW)

2016
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 Dramatic reduction of information the
brain (central hub) needs to care about

 Energy consumption scales based on 
effort: no work, no energy needed

 Specialized parallel computing
 Joint 3D memory-logic architecture



ECG-aware 
compression

Smart Embedded Node
ECG

Noise 
filtering

ECG 
delineation

ECG Analysis
(arrhythmia)

Displays the received data and 
relays to medical personnel

Software: wearable systems can implement multi-lead ECG analysis 
• Filtering: Low-complexity methods using integer computing (real-life tests on measured points)
• Delineation: Multi-lead ECG arrhythmia analysis in real-time (doctor support for quality loss)
• Communication and storage: bio-signal based compressive sensing (only 30% of data kept)

David Atienza (ESL-EPFL) 12



See video at: http://esl.epfl.ch/cms/lang/en/pid/46016
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 Real-time delineation demands limited requirements after careful algorithm
optimization (computational load and memory footprint) 

Algorithm RAM usage Buffers length Execution time

Single-lead WT 
delineator

6.8 kBytes 512 elements 5%

Multi-lead WT 
delineator 

(morphological 
filter of baseline 

removal)

5.5 kBytes 256 elements 30.5% total 
(23% filtering, 

2.5% multi-lead merging,
5% delineation)

Execution of complex automatic ECG processing algorithms is possible  
Small on-chip memory (10 kB) is the current limiting factor

Advanced on-chip processing gives real-time information about heart 
health with no impact on node lifetime: more than 139 hours
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 Using CS it is sufficient to collect M (<<N) linear random measurements (samples)

 Then,     can be recovered by solving the convex optimization problem: 

y
M ×1

= Φ
M ×N

⋅ x
N×1

Measurement vector Original ECG vector

Measurement/Sensing matrix 
(Gaussian random matrix)

 

α
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CS is attractive for real-time ECG compression on 
resource-constrained WBSN, but what about biosignal
degradation due to CS reconstruction (in real-time)? 



See video at: http://esl.epfl.ch/page-42817.html
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Node lifetime 

134.6 h
30%

1.3%

Code execution time

37%
107 h

147 h

23 x

~10%

Limited gains because the used generic microcontroller is not optimized for 
ultra-low-power DSP and CS-based operations in biological signals

David Atienza (ESL-EPFL) 17


Chart1

		DWT

		CS

		No compression



Series 1

107.05

146.8

133.74



Sheet1

				Series 1		Series 2		Series 3

		DWT		107.05		2.4		2

		CS		146.8		4.4		2

		No compression		133.74		1.8		3

		Category 4		4.5		2.8		5

				To resize chart data range, drag lower right corner of range.

		No compression		133.74






Chart1

		DWT		DWT		DWT		DWT

		CS		CS		CS		CS



Code execution time

Code execution time

Code execution time

Code execution time

580

580

580

580

25

25

25

25



Sheet1

				Code execution time		Series 2		Series 3

		DWT		580		2.4		2

		CS		25		4.4		2

		Category 3		3.5		1.8		3

		Category 4		4.5		2.8		5

				To resize chart data range, drag lower right corner of range.







ECG

 Initial streaming design
 Sensing dominates (90%)

 Smart WBSN M-IoT design
 Processing dominates (70%)
 Transmission still important (23%)

Sensing and 
sampling

Data processing
Radio communication

Energy consumption 
breakdown

ShimmerTM node

David Atienza (ESL-EPFL) 18

Limited gains because the used generic microcontroller is not optimized for 
ultra-low-power DSP and CS-based operations in biological signals

134h (~5 days) in 
streaming wearables

175h (~7 days) in 
smart wearables
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 Lightweight architecture
 3-stages pipeline, 16-bit Harvard RISC (PIC24)
 24-bit instruction size
 Appropriate for single word instructions

 Optimized instruction execution
 Mostly single word instructions
 Mostly single cycle execution, low clock
 Partial data bypass

 Specialized instructions (low clock)
 Multi-bit shift in one cycle
 Single-cycle multiplication
 Multiple-cycle division

[Dogan et al., DATE 2011, DATE 2012] 

Firat v1.0  
(umcL 130nm) 

Firat (umcL 90nm) 
David Atienza (ESL-EPFL) 19



Number of Clock Cycles(*)
FIRAT MSP430 PIC24

Filtering 349 K 658 K 430 K
Compression 114 K 800 K 121 K

(*) 1-package compression (512 samples)

FIRAT vs. MSP430:  up to 85% cycle 
count reduction

Exploited voltage scaling: Up to 
890x power saving with respect to

commercial PIC24 chip

FIRAT vs. PIC24: Slightly faster  
due to enhanced data bypass 
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So finally we get 2x  
system lifetime… And 

Smart Wearables! 
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 Non-intrusive, light and can reduce visits of patients by 50-60% (4-week test)
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And tested with SolarImpulse pilots too!



 Monitoring pilots using a SmartPhone as “doctor in the cockpit” 

But where did we lose so much possible 
energy savings? What else can we do?
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 Memory occupies a large percentage of area… And consumes a lot of power
 Power gating not feasible in many wearable applications (retain bio-signal content) 

65%

35%

Active power

Memory

Logic

7%

93%

Leakage power

Significant contribution to power consumption through leakage 
when logic used at low voltages/frequencies,                                              

reduce memories supply voltage

Custom ECG embedded processor
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 Tech. scaling (starting at 65nm): 
 Power overhead for full error coverage:

 Inherit techniques from video/image processing: 
 Computations do not contribute equally to QoS
 Significance-driven: critical vs non-critical computations
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Can SD computing help with memories for wearable sensors?

David Atienza (ESL-EPFL) 24



 Significant data: full protection
 I:  12.5% significant
 II:  25% significant
 III: 37.5% significant
 IV: 50% significant

 Significance sensitivity analysis
 Black box approach: output based
 Inject error (k) and observe faulty output (  )

 Sensitivity metric: % root-mean square differences: Case PRD
I 63%
II 32%
III 18%
IV 9%

Only little data percentage is 
really “significant”

2

2

( ) kY Y
PRD k

Y
−

=

kY

SD computation achieves ~50% lower energy in memories… 
And doctors monitoring pilots in action did not notice anything!
Are we done? Do we have our smart sensor ready as a brain?
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[Braojos et al, DATE’14]
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Instruction
Memory

Data
Memory

 Exploit features of multi-lead ECG (~2x lifetime)
 Specialized instructions for biosignals compression
 Low sampling rates: near-threshold computing 

 Exploit technology: Multi-Processor SoC (MPSoC) for biosignals
 Parallel computing for each lead, data broadcast and special hardware synchronizers
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Dicle 
(umcL 180nm) 

Firat 
(umcL 90nm) 

Lifetime (in hours)

6x lifetime
(25-28 days)

Hardware: MPSoC fulfils workloads at 50% 
lower power than single-core wearables, 

finally smart wearables show true potential!



 Multiple applications for smart MPSoC wearables, just a few:
 Accurate sleep apnea tests
 Epilepsy prediction (non-invasive)
 Animal health (and stress) monitoring
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But new dimension: highly variable systems over time,                                         
(1) Adaptability needed, (2) Large volumes of (permanent) data to keep 



 Application workload depends on 
sampling frequency
 Periodic bursts of computation
 Recurrent short idle periods 

between samples (>90% of time)

 Current design strategy for smart low-power wearables
 HW: MPSoC designs + SW: advanced code synchronization
 Static voltage-frequency scaling (VFS) selection

 Reduce System Clock
 Reduce System Supply Voltage

But for adaptive wearables, VFS cannot be exploited anymore, as 
more computation is needed! Need to re-think design strategy

Processing
(leakage) 
60.75%

Transmission 23% Sensing 7%

Processing
(dynamic) 

9.25%
Memory

Logic
86.5%

 Power Consumption
 Power = 1 mW
 Freq = 1 MHz 
 VDD = 0.6-0.8 V

 Dominated by Leakage!!
SOLUTION: Reduce leakage in idle periods

Complete fine-grained power-gating in idle period                                                
(but without losing data, as the brain does!)
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1) Low-voltage Spin-Transfer Torque 
RAM (STTRAM) NVM
 New Memory Subsystem management

 Non-Volatile Memory (NVM)
 Tiny volatile page buffers (I-PB, D-

PB) acting as a cache for the NVM
 Memory Management Unit (MMU)

+ extended Synchronization Unit
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… …
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2) 3D monolithic Integration
 Multi-tier MPSoC chip

 Bottom: Processing Tier
 Upper: NVM Tier

 Ultra-dense interconnect: Inter-Level 
Vias (ILV): NVM ↔ Page buffers
 1-cycle page transfer
 Fast Save/Restore state

David Atienza (ESL-EPFL) 29

[Braojos et al., ESWEEK 2016] 
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Power consumption
 4 ECG processing apps
 2 architectures

 State of the art (SOA)
 3D + NVM (TARGET)

 Up to 82% less Leakage
 5.42x energy system reduction

Area footprint
 Very compact memory 

subsystem (Inst. and data)
 5x less Area Footprint
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Promising energy (5.42x) and area footprint (5x) reductions 
with 3D MPSoC NVM architectures for Smart Wearables

[Braojos et al., ESWEEK 2016] 



 Homogeneous MPSoC architecture
 Parallel execution
 Low clock frequency enabled
 But not optimized for intensive (repetitive) tasks

 Brain training: “HW specialization” 
 Highly energy efficient
 Limited configurability (based on iterative training)
 Application dependent (per domain)

 Low-power heterogeneous MPSoC 
reconfigurable architecture
 Based on a Coarse-Grained Reconfigurable 

Array (CGRA)
 High energy efficiency
 High configurability / flexibility

[Duch et al., BioCAS 2016] 
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 Complex smart wearable system
 Filtering (MF+RMS) [Sun et al., 2011], 
 Delineation (MMD) [Rincon et al., 2013] 
 Heartbeat Classifier (RP-CLASS) [Braojos et al., 2015]

 Setup: 5000 Samples - MIT-BIH database
 Sampling freq.: 500 Hz, System freq.: 1 MHz
 MPSoC (SW only) vs specialized (SW+CGRA)

18.6 %

6.1 %

7.7 %

 Energy savings in all 3                 
considered applications
 Relevant kernels identifiable

in all phases of system
 CGRA energy compensated                                

by reduction in cores
 Unused RC cells power-gated
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[Duch et al., BioCAS 2016] 

30% energy savings, promising but new exploration field:
MPSoC specialization with more setups, data sharing, 

dynamic reconfiguration…
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 Wearable devices are getting everywhere… “IoT Era” coming (in some domains 
more than others…)
 Powerful multi-core architectures and connectivity available
 But not low power… To be re-designed with care!

 Smart MPSoC wearables needed for IoT
 Hardware and software equally important
 Let’s get inspiration from biological systems

 Luckily lots of research to reach                                                                            
truly smart wearables, but thanks                                                                                   
Mr. Spock for initial idea!                                                                                                  
Tricorder: 1st Smart Wearable!                                                              
(Sense, compute and record)

david.atienza@epfl.ch
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 ULP WBSN computation optimization and ECG application mapping
• R. Braojos, H. Mamaghanian, A. Junior, G. Ansaloni, D. Atienza, et al.,“Ultra-Low Power Design of Wearable

Cardiac Monitoring Systems”, Proc. of DAC, 2014.
• F. Rincon, J. Recas, N. Khaled, D. Atienza, “Development and Evaluation of Multi-Lead Wavelet-Based ECG

Delineation Algorithms for Embedded Wireless Sensor Nodes”, IEEE Trans. on Information Technology in
BioMedicine (TITB), Nov. 2011

 Single- vs. multi-core WBSN platform design
• L. Duch, S. Basu, et al., “A Multi-Core Reconfigurable Architecture for Ultra-Low Power Bio-Signal Analysis”, Proc.

of BioCAS, 2016.
• R. Braojos, D. Atienza, et al. “Nano-Engineered Architectures for Ultra-Low Power Wireless Body Sensor Nodes”,

Proc. of CODES-ISSS, 2016.
• R. Braojos, I. Beretta, G. Ansaloni, D. Atienza, “Hardware/Software Approach for Code Synchronization in Low-

Power Multi-Core Sensor Nodes”, Proc. of DATE, 2014.
• A. Y. Dogan, J. Constantin, M. Ruggiero, D. Atienza, et al., “Multi-Core Architecture Design for Ultra-Low-Power

Wearable Health Monitoring Systems”, Proc. DATE, 2012.

 CS-based ECG delineation and implementation
• H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, “Compressed Sensing for Real-Time Energy-Efficient

ECG Compression on Wireless Body Sensor Nodes”, IEEE Trans. on Biomedical Engineering (TBME), 2011
• K. Kanoun, H. Mamaghanian, N. Khaled, D. Atienza, “A Real-Time Compressed Sensing-Based Personal

Electrocardiogram Monitoring System”, Proc. DATE, 2011.
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 ULP biosignal analysis and optimization
• R.Braojos, I. Beretta, G. Ansaloni, D. Atienza, “Early Classification of Pathological Heartbeats on Wireless Body

Sensor Nodes”, MDPI Sensor, Dec. 2013.
• R. Braojos, G. Ansaloni, D. Atienza, “A Methodology for Embedded Classification of ECG Beats Using Random

Projections”, Proc. of DATE, 2013.
• H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, “Design and Exploration of Low-Power Analog to

Information Conversion Based on Compressed Sensing”, IEEE Journal on Emerging and Selected Topics in
Circuits and Systems (JETCAS), Sept. 12.

• N. Boichat, N. Khaled, F. Rincon, D. Atienza, “Wavelet-Based ECG Delineation on a Wearable Embedded Sensor
Platform”, Proc. BSN, 2009.

 Significance-Driven Computing on WBSN
• M. Sabry, D. Atienza, F. Catthoor, “OCEAN: An Optimized HW/SW Reliability Mitigation Approach for Scratchpad

Memories in Real-Time SoCs”, ACM TECS, Apr. 2014
• G. Karakonstantis, M. Sabry, D. Atienza, A. Burg, “A Quality-Scalable Spectral Analysis System for Energy Efficient

Health Monitoring”, Proc. of DATE, 2014.
• M. Sabry, G. Karakonstantis, D. Atienza, A. Burg, “Design of energy efficient and dependable health monitoring

systems under unreliable nanometer technologies”, Proc. of BodyNets, 2012.
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