MARTE and IP-XACT based approach for run-time scalable NoC

Hilliwi Leake KIDANE, El-Bay Bourennane
University of Burgundy, Dijon, France

IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoc 2018)
Hanoi, Vietnam, September 14th, 2018

Organization

- Introduction
- Motivation
- UML Profile for MART
- Model transformation
- Proposed approach
- Case-study
- Conclusion

Introduction

- The use of FPGA as a platform for MPSoCs is increasing from time to time

- Similarly, there is a promising progress in integrating FPGA in cloud environments for hardware acceleration

- This is due to their:
 - High performance per watt
 - Reconfigurability
 - Parallelism

- DPR is a technique that enables to dynamically modify preselected area of the FPGA at run-time and on demand.
INTRODUCTION

- NoC has been considered as optimal choice for FPGA based MPSoC
 - scalable
 - Increased throughput
 - Suitable to create IP chains
- A lot of works have been proposed to increase the dynamic flexibility and adaptability of the NoC

MOTIVATION

- How to design the NoC?
- Two possible options:
 - To write the NoC HDL using traditional handwriting method.
 - Prone to error
 - Complex
 - To automate the NoC design using high-level conceptual modeling like Unified Modeling Language (UML)
 - Complexity reduced
 - Time-to-market increased
 - Needs model transformation tools to generate the low level HDL codes

UML PROFILE FOR MARTE

- UML - Unified Modeling Language
 - Standardized modeling language, industry standard
- UML profile for MARTE (Modeling and Analysis of Real-Time and Embedded systems) is an extension of the UML and specifies some concepts for:
 - model-based design and analysis of real time and embedded systems
- Supports modeling of
 - Application, execution platforms, allocation
UML Profile for MARTE

- **MARTE** architecture is divided into four packages.
- It is modular in structure and user can choose any sub-profile needed for their design.
- For example, to design a NoC topology, the Repetitive Structure Modeling (RSM) profile can be used.

Repetitive Structure Modeling profile

- **Concepts**
 - **Shape**
 - To model multidimensional arrays
 - **Link topology**
 - To model the topology of the links between multidimensional arrays
 - Pattern-based regular topologies

UML Profile for MARTE

- **Accelerators unit**
 - 16 processors
- **Topology**
 - 4x4 grid
 - Bidirectional
 - North-south
 - East-west

UML Profile for MARTE

- In general, the NoC building blocks and concepts can be realized using the different MARTE profiles like:
 - Routers => MARTE profile package HW_media
 - Topology specification => MARTE profile RSM
 - Routing algorithm => MARTE state machine
 - Switching => MARTE profile enumeration
Model Transformation

- High-level design need to be transformed into an intermediate (system level) representation before generating the low-level HDL design (RTL level).

- The IP-XACT standard has been used for system level modeling of MP-SoC and automatic RTL generation of the target architecture.

- So, it can be used as intermediate transformation level.

Model Transformation

- IP-XACT standard
 - is the language-independent specification of IP meta-data.
 - Uses XML syntax to describe structure.
 - Created by SPIRIT (Structure for Packaging, Integrating and Re-using IP within Tool flows) consortium.

- Consists of several concepts/parts:
 - Component
 - Used to represent individual IPs
 - Bus Definition
 - Inter-Component communication specific resources
 - Design
 - Overall integration and connectivity of the system

- It relies on HDLs to describe IP behavior (SystemC, VHDL, ...)

MARTE and IP-XACT Based Approach for Run-time Scalable NoC

- MDWorkbench provides facilities to transform models and generate textual information.

- Kactus2 is a toolset for IP-XACT based SoC design.

Case Study

3x3 scalable NoC MARTE model
3x3 Scalable NoC MARTE model

- 2x2 Static SubNoC

- 2x1 Reconfigurable sub-column

- 1x3 Reconfigurable sub-row

- 3x3 Scalable NoC top-level
CONCLUSION

- Designing a NoC following the traditional handwriting is error prone and complex.
- The complexity can be reduced by automating the NoC design using UML/MARTE high-level modeling.
 - And increases the time-to-market
- IP-XACT is used as intermediate (system level) representation before generating the low-level HDL
- Then, the generated HDL at RTL level is used to implement the DPR based scalable NoC
- As a future work, the full system which include the NoC and IPs will be designed at high-level using MARTE

Thank You!!!

Questions?