INTRODUCTION

- Basics of using embedded instruments (EI) for life-time prediction
- Behaviour and implementation of *environmental* embedded instruments
- The dependence of delay from V_{dd} and T for decision-making counteractions
- Behaviour and implementation of *performance* embedded instruments
- Data fusion of measurements of EIs and correlations
- Life-time predictions using machine-learning
- Conclusions

EMBEDDED INSTRUMENTS AND LT PREDICTION (LTP)

- Embedded instruments around processor core for life-time prediction [$F_{max}(VDD, T)$] under aging
- Adapting lifetime via embedded instrument measurement results

IMPLEMENTATION OF BASIC EMBEDDED INSTRUMENTS

- Four *temperature* (T) monitors
- A power-*voltage* (V) monitor
- Slack-*delay* (SD) monitors
- A I_{ddx} current embedded monitor

Chip design implementation (ASIC 40nm, TSMC CMOS)

All EIs are Hitag compatible, and Hitag infrastructure is included
ON-CHIP MEASURING TEMPERATURE AND VOLTAGE

Actual T and VDD measurements over time

Also used in DVFS systems!

ENVIROMENTAL CONDITIONS OF T AND VDD ON DELAY

(T and VDD relation)

Fault-free situation!

I_{DDT} MONITOR PRINCIPLE AND SPECIFICATIONS

Monitoring principle
- Current signal from unbalanced current mirror (CM)
- \(R_{\text{PAD}} \) → Metal sheet resistance
- Proposed monitor → Use unbalanced CM technique for \(I_{\text{DDT}} \) measurement

Derived Specifications:
- Sampling rate: close to the processor frequency (200MHz)
- Measurement range: 0.5mA - 10mA
- Resolution: < 17uA (in case 10b ADC)
- Area: < 0.017 mm² (40nm CMOS)
- Robust to process variation and aging

DESIGN AND BEHAVIOUR OF THE ANALOGUE \(I_{DDT} \) MONITOR
SLACK-DELAY EMBEDDED INSTRUMENTS (1ST GEN)

Example circuit design
(Time to Digital Converter (TDC) not shown)

Derived Specifications:
- Measurement range: 15ps - 480ps
- Resolution: 15ps
- Area: < 0.0054 mm² (40nm, CMOS)
- Robust to process variation and aging

Measured slack-delay (sim)

SIMULATIONS ON I_{DDX} AND SLACK-DELAY VERSUS AGING

- Slack-delay EI post-layout simulation versus aging during lifetime

Previously measured correlation

- I_{DDX} current EI post-layout simulation versus aging during lifetime

MEASUREMENTS EXAMPLE OF SLACK DELAY AND I_{DDX} (2)

Example of logic unit and several critical paths monitored via slack delay

- Down if slack delay = 0

MEASUREMENTS EXAMPLE OF SLACK DELAY AND I_{DDX} (1)

- Example of logic unit and several critical paths monitored for correlated delay

All are related to Fmax…. (cause of failure!).

Lifetime Prediction Basics (from Experiments)

\[f(t) = a + b \times t^c \]

- From many delay measurements!
- Delay model building (directly related to Fmax)

New Procedure for Life-Time Prediction (LTP)

\[f(t) = a + b \times t^c \]

- T and VDD included
- EI data fusion
- Delay model
- ML genetic algorithm
- Remaining Lifetime Probability (RLP)

Embedded Instrument Data Fusion at Time \(T_X \)

<table>
<thead>
<tr>
<th>Embedded Instrument (EI):</th>
<th>Mean: (ns)</th>
<th>Standard deviation:</th>
<th>Variance:</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL-SD1</td>
<td>6.00</td>
<td>0.024063</td>
<td>0.00058</td>
</tr>
<tr>
<td>EL-DDX</td>
<td>5.01</td>
<td>0.043012</td>
<td>0.00185</td>
</tr>
<tr>
<td>EL-SD2</td>
<td>5.30</td>
<td>0.089833</td>
<td>0.00807</td>
</tr>
<tr>
<td>EL-SD3</td>
<td>5.50</td>
<td>0.127083</td>
<td>0.01615</td>
</tr>
<tr>
<td>Fusion</td>
<td>5.65</td>
<td>0.031259</td>
<td>0.00101</td>
</tr>
</tbody>
</table>

Conditions:
- Measurements synchronized in time
- Correlation of slack-delay & \(I_{DDX} \) (NR)
- Aging is time parameter
- Adaptive measurements over time

Fusion of Slack Delay and \(I_{DDX} \) Instruments

- Simple implementation via Central Limit Theorem (MIPS)
 \[X3 = \frac{1}{(\sigma_1)^2 + (\sigma_2)^2} \cdot ((\sigma_1)^2 \cdot X_1 + (\sigma_2)^2 \cdot X_2) \]
- Improvement via Kalman filtering, more complex calculations (ARM)

Reliability control center

- Genetic Algorithm
 - Degradation trend feature: \(a_0, b_0, c_0 \)
 - Degradation trend feature update: \(a_i, b_i, c_i \)

- RL-P results

Sample Processors

- Historic data
 - Slack-delay & \(I_{DDX} \)

- Genetic Algorithm
 - EI Fusion & Build mapping

- Remaining Lifetime Probability (RLP)

- Field usage Processes
CONCLUSIONS

- Several embedded instruments have now been used for LTP:
 - Environmental (T, VDD)
 - Performance (SD, I_{DDX}) (technological EIs not used yet)
- Data fusion of slack-delay and I_{DDX} embedded instruments implemented using different algorithms
- Developed enriched RLP flow diagram for more accurate predictions
- Usage of single-variable machine-learning genetic algorithm
- Use of more than one EI can provide better accuracy & diagnosis
- In future much more EIs will be fused and ML for improved prediction